Sampling-based Inference of Time Deformation Models with Heavy Tail Distributions

نویسندگان

  • Zhongxian Men
  • Tony S. Wirjanto
  • Adam W. Kolkiewicz
چکیده

This article focuses on simulation-based inference for the time-deformation models directed by a duration process. In order to better capture the heavy tail property of the time series of financial asset returns, the innovation of the observation equation is subsequently assumed to have a Student-t distribution. Suitable Markov chain Monte Carlo (MCMC) algorithms, which are hybrids of Gibbs and slice samplers, are proposed for estimation of the parameters of these models. In the algorithms, the parameters of the models can be sampled either directly from known distributions or through an efficient slice sampler. The states are simulated one at a time by using a MetropolisHastings method, where the proposal distributions are sampled through a slice sampler. Simulation studies conducted in this article suggest that our extended models and accompanying MCMC algorithms work well in terms of parameter estimation and volatility forecast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Empirical Bayes Inference for Means Using Student t Prior Distributions

Hierarchical models for L studies, domains or experiments often assume that the study means have a common normal population distribution. However, modeling normal sampling distributions with a normal population distribution may overstate the level of exchangeability of the studies. Using heavy tailed population distributions, in particular t distributions, provide some protection from combining...

متن کامل

MCMC and EM-based methods for inference in heavy-tailed processes with α-stable innovations

In this paper we present both stochastic and deterministic iterative methods for inference about random processes with symmetric stable innovations. The proposed methods use a scale mixtures of normals (SMiN) representation of the symmetric stable law to express the processes in conditionally Gaussian form. This allows standard procedures for dealing with the Gaussian case to be re-used directl...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Statistical Inference in the Presence of Heavy Tails

Income distributions are usually characterised by a heavy right-hand tail. Apart from any ethical considerations raised by the presence among us of the very rich, statistical inference is complicated by the need to consider distributions of which the moments may not exist. In extreme cases, no valid inference about expectations is possible until restrictions are imposed on the class of distribu...

متن کامل

Autoregressive Conditional Duration Model with an Extended Weibull Error Distribution

Trade duration and daily range data often exhibit asymmetric shape with long right tail. In analysing the dynamics of these positively valued time series under autoregressive conditional duration (ACD) models, the choice of the conditional distribution for innovations has posed challenges. A suitably chosen distribution, which is capable of capturing unique characteristics inherent in these dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Communications in Statistics - Simulation and Computation

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2016